
Reduction and Evaluation of Elliptic Integrals1"2 

By W. J. Nellis and B. C. Carlson 

1. Introduction. To evaluate an elliptic integral, one reduces it (often by a sub- 
stitution involving Jacobian elliptic functions) to a combination of three standard 
tabulated integrals, customarily Legendre's normal integrals of the first, second, 
and third kinds. A very long list of integrals with algebraic, trigonometric, or 
hyperbolic integrands has been compiled by Byrd and Friedman [1] and reduced to 
Legendre's integrals; shorter lists are given by Gr6bner and Hofreiter [5] and Milne- 
Thomson [6]. 

The present paper proposes, and partially carries out, a scheme for reducing a 
large number of elliptic integrals by means of a relatively short list of formulas. 
The first step is to evaluate the integral at hand in terms of the hypergeometric 
R-function [2]; this step replaces transformation to an integrand containing Jacobian 
elliptic functions, which are entirely avoided in the present procedure. Partly 
because of the flexibility provided by the numerical parameters in the R-function, 
the first three formulas in Table I are able to serve the same purpose as some 
seven hundred of the formulas in [1]. The second step is to express the R-function 
(with specific values of the parameters) in terms of three standard R-functions which 
are similar to but somewhat different from Legendre's normal integrals. This step 
is accomplished by means of Table II and its eventual extensions, which provide a 
further economy of space relative to a table reducing integrals of Jacobian elliptic 
functions to Legendre's integrals. 

It is the second step which at present limits the utility of this procedure to in- 
tegrals which are not of the third kind. Although the standard R-functions of the 
first and second kinds, RF and RG , have been described in some detail [3], the proper- 
ties of a corresponding function of the third kind are still being investigated. Never- 
theless, it seems useful at the present time to give an account of the procedure and 
to provide tables for reducing and evaluating integrals of the first two kinds. 

Short numerical tables of the standard functions RF and RG are included to show 
their general behavior. More precise values may be computed by the algorithms in 
[4] or the program for automatic computation given in [7]. The arguments of the 
tables have been chosen with an eye to facilitating interpolation in eventual larger 
tables; in particular the region where interpolation becomes very difficult in 
Legendre's tables (near 0 = 0 = 900) is now expanded into a strip extending to infinity. 
Before entering the tables it will usually be necessary in practice to compute two 
square roots, whereas two arc sines as well as two square roots are often needed to 
enter Legendre's tables. 
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TABLE I 

(T.1) *f (t - x)a(y - t)I(p + qt) (r + st)5(u + vt)E dt 

= (y- x)a+#+lB(a + 1, 13 + l)(p + qx)Y(r + sx)>(u + vx)E 

*R (a + 1; a +1 + + 6 + e + 2, -y,-6, -; 1, 
p + qy r + sy u + vy\ 

k '~~~~~~~~~p + qx' r +sx'u +vxj 
(Re a > -1; Re > -1; x < y; arg (p + qt) I < 7r for every t in the interval 
[x, y], and similarly for r + st and u + vt; by (3.3), a and 13 may be interchanged 
on the right side if x and y are also interchanged on the right side except in the 
first factor). 

(T. 2) Jf?' (t - x)a(t - p)I(t - q) (t - r) (t- s)e dt 

- B(a, a + l)R(a; -1, -Ty -6, -E; x - p, x - q, x - r, x -s) 

(a = -a - T--6 -E- 1; Re a > O; Re a > -1; I arg (x- p)l < 7r, *** 

Iarg (x - s)j < 7r). 
(T.3) f00 (x -t)a(p - t)(q - t)(r - t)(s - t)E dt 

- B(a, a + 1)R(a; -1, -y, -6, -E; p - x, q - x, r - x, s -x) 

(a = a -cx - 7-6- E-1; Re a > O; Re a > -1; I arg (p - x)l < 7r, 

I arg (s - x) < 7r). 

(T.4) If 0 < 4 < VI < 7r/2, f(O) may be sin 0, sin2 0, or cos2 0; 
if 0 ? q < ,6 < ?r, f(0) may be cos O; 
if 0 ? 4 < ,6, f(0) may be sinh 0, cosh 0, sinh2 0, or cosh2 0: 

I f(0) - f) a I Aflp) - f() I[p + qf(0)IVI[r + sf(0)V'[u + vf(0)Y dO dO 

= I f() - f(o) ja+'+lB(a + 1,/3 + l)[p + qf(4)If[r + sf(q) ][u + vf(4)]e 

R (? + 1; a* + +1 + 6 + e + 2,-T,-6,-e; 1, p + qf(,1) r + sff(6!) u + vf ()) 
k a~~~a 7 E, Y ,,E,~~~~~~ p+qf(4.) 'r +sf(4,) u +vf~p) 

(Re a > -1; Re 1 > -1; I arg [p + qf()]>I < 7r for every G in the interval [4, ,6], 
and likewise for r + sf and u + vf; by (3.3), a and 1 may be interchanged on the 
right side if 4 and i/ are also interchanged on the right side). 

2. List of Integrals. The hypergeometric R-function is defined for present pur- 
poses by the integral representation 

a n 
(2.1) B(a, c - a)R(a; bi, , bn.; z1 . * Zn) = f tca1 JJ (t + zi)'b' dt, 

where c = Z=i bi and B is the beta function. The path of integration is the positive 
t-axis; we assume I arg zi / < 7r and take the principal value of (t + zi)-b for all 
i = 1, * * *tn. Convergence of the integral requires Re c > Re a > 0; when this con- 
dition is not satisfied, R is defined by a hypergeometric series [2]. 

Several properties are evident from (2.1 ): R is unchanged if the same permutation 
is applied to the parameters (b) and to the arguments (z); any b-parameter that is 
zero can simply be omitted along with the corresponding argument; R is homoge- 
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neous of degree -a in (z); and R has the value unity when every one of its argu- 
ments is unity. 

Elementary substitutions reduce the integrals of Table I to the form (2.1): let 
t equal (rx + y)/(r + 1) in (T.1), r + x in (T.2), and x -r in (T.3). It is evident 
that (T.1) is related to (T.4) by t = f(O), the absolute value signs being necessary 
if f is a decreasing function of 0. 

3. Reduction to Standard Integrals. We choose as standard R-functions the 
normal integrals discussed in [3]: 

(3.1) RF(x, y, z) = R(4; 4 4 ,4; x, y, z), 

RG(x, y, z) = R(-; 1 1 1; x, y, z). 
Both are completely symmetric in x, y, z; RF is homogeneous of degree -4 and RG of 
degree +4. Legendre's F(O, k) can be expressed in terms of RF alone, while E(0, k) 
is a combination of RF, RG, and an elementary function. 

Let 2b , 2b2 , 2b3 be odd integers. If 2a is also anodd integer, the relations between 
associated R-functions [2] imply that 

(3.2) CR(a; bi , b2, b3 ; x, y, z) = CFRF(x, y, z) + CGRG(X, y, z) + CA(XYZ)-12, 

where the C's are homogeneous polynomials in x, y, z. A list of these polynomials is 
given in Table II. If a is a negative integer, R is itself a polynomial; if a is a positive 
integer, one may use the table after applying the Euler transformation [2]: 

(3.3) R(a; b , b2 , 63 ; x, y, z) = X-byb2z-b3R(a'; bi, b2 , 63 ; x-1, y1 z-1) 

where 2a' is now an odd integer because of the definitions 

(3.4) a 'c-a, c-b? + b2 + b3. 

The Euler transformation also explains the form of the third term on the right side 
of (3.2): since the R-function is unity when its first parameter vanishes [2], we have 
R(4; 4, 4 ,; X, y, Z) = (XYZ)Y112 

Because the integrals of Table I necessarily lead to R-functions for which a and a' 
have positive real parts, Table II has been restricted to cases in which 2a is a positive 
odd integer and a' is a positive integer. Also, because the R-function is invariant 
under simultaneous permutation of b-parameters and arguments, we may assume 
be ? b2 > 63. These conditions being understood, Table II includes all cases in 
which the b-parameters are ?4 2 or i 3, as well as all cases in which one b-parameter 
is 4 and the remaining two are 4 2. 

Multiple integrals may lead to R-functions with a or a' negative, RG itself being 
an example. Some integrals of this type are considered in [3], and some reduction 
formulas are given in [7]. The latter are useful also in extending Table II by means of 
recurrence relations [2, 7], of which we give only a single example since it is mis- 
printed in [7]: 

a(a + 1)zlz2z3R(a + 2) = az1z2z3 i (1-a' + bi) ziJ1R(a + 1) 

(3.5) 3 

+ (a' - 1) a, (a - bi)ziR(a) + a'(a' - 1)R(a- 1), w+ 1 
where R (a + m) stands for R (a + m; bi , 62, 3 ; Z1) Z2, IZ3). 
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Although it is convenient to have a separate table of reduction formulas for com- 
plete elliptic integrals [7], they can alternatively be treated as incomplete integrals 
with one vanishing argument and reduced by using Table II. We suppose that an 
integral is evaluated by Table I in terms of an R-function with only two nonvanish- 
ing b-parameters. By (2.1) we may write 

(3.6) B(a, bi + b2- a)R (a; bi, b2 ; x, y) 

= B(a, bi + b2 + b3 - a)R(a; b1, b2, b3 ; X, Y, 0) 

and choose b3 to be I or 3. If 2a, 2b1, 2b2 are odd integers, Table II may be used to 
express the right side in terms of RF, G(X, Y, 0); the polynomial CA will vanish with z. 

The economy of Table II relative to a table of integrals of Jacobian elliptic func- 
tions is illustrated by the integrals of cn2u, nc2u, dn2u, nd2u, cd2u, and dc2u. All six 
integrals can be expressed by [2, Eq. (8.1)] in terms of R (; I, I I-; x, y, z); they 
differ from one another only by the six permutations of the arguments. Thus a single 
reduction formula for this R-function replaces six separate formulas reducing the 
integrals in question to Legendre's normal integrals. 

4. Conjugate Complex Arguments. If a real integrand contains a half-odd-in- 
tegral power of a polynomial with a pair of conjugate complex roots, reduction of the 
integrals by Tables I and II may lead to its expression in terms of RF, G(X, Z, Z), where 
x is real and nonnegative and 2 denotes the complex conjugate of z. In order to re- 
place the complex arguments by real nonnegative arguments, one may apply a 
Landen transformation [3]: 

(4.1 ) RF(X, Z, Z) = RF(U, V, W), 

2RG(X, Z, 2) = 4RG(U, V, W) - I z RF(U, V, W) -X12 

where 

2u = j z + Rez, 

(4.2) 2v = z +x + z-x-, 

2w = z + x - z-x - . 

5. Numerical Tables. Because RFG(X, y, z) is homogeneous and symmetric, it 
suffices to tabulate RFG(X, y, 1) in any one of the six regions into which the first 
quadrant of the x, y plane is divided by the lines x = 1, y = 1, and x = y. For con- 
venience of format we choose one of the two rectangular regions, say 0 < x ? 1 < y. 
To avoid terms in xl/2 as x -*0, we tabulate RF,G(X2, 1, y2). 

On the boundary of the region of tabulation, RF, G reduces to either an elementary 
function or a complete elliptic integral: 

RF(1, 1, 1) = R(1, 1, 1) = 1, IF(0, 1, 1) = 2RG(0, 1, 1) = r/2, 
RF(X2 11) = 2RG(x2, 1, 1) - x = (1 - X2)-112 cos-1 x 

RF(1, 1, y2) = 2RG(1, 1, y2) _ y = (y2 - 1)-112 cosh- y, 

RF(0, 1 y2) = y-1K(k), RG(0 1 Y2) - 'yE(k) (k2 = 1 _ y-2). 
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The behavior of the functions as y -* oo can be found from the ascending Landen 
transformation [4]: 

RF(X2, 1,y 2) = 1 n 4Y + 0__y 

(5.2) 
Y 

(RG(X2 1, y2) y + ? (ln y) 

More accurate asymptotic forms found by the same method can be modified by trial 
and error to get elementary functions which provide rough approximations to RFG 

in the entire region of tabulation: 

/1 1 + x + x2\ 4y f(x, y) H _ ln Y 
JX , J - Y ' 7Y3 1 + X' 

(5.3) (1 _ )2 1 + X2 

g(x,y) -ly ( 8X) + 41 x f(x,y). 

Defining correction factors sp and y by 

(5.4) RF(X2, 1, y2) = sP(X, y)f(x, y), RG(X2, 1, y2) = Y(x, y)g(x, y), 

we have, for 0 < x < 1, 

TABLE MIla 
RF(X2, 1, y2) 

x 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

1.0 1.571 1.478 1.398 1.327 1.265 1.209 1.159 1.114 1.073 1.035 1.000 
1.2 1.431 1.353 1.285 1.225 1.171 1.123 1.079 1.039 1.003 0.969 0.938 
1.4 1.318 1.251 1.192 1.140 1.092 1.050 1.011 0.975 0.943 0.913 0.885 
1.6 1.225 1.166 1.114 1.067 1.025 0.987 0.952 0.920 0.891 0.864 0.838 
1.8 1.146 1.094 1.047 1.005 0.967 0.933 0.901 0.872 0.845 0.820 0.797 

2.0 1.078 1.031 0.989 0.951 0.916 0.885 0.856 0.829 0.805 0.782 0.760 
2.2 1.019 0.976 0.938 0.903 0.871 0.842 0.816 0.791 0.768 0.747 0.727 
2.4 0.967 0.928 0.893 0.861 0.831 0.805 0.780 0.757 0.736 0.716 0.698 
2.6 0.921 0.885 0.852 0.822 0.795 0.770 0.747 0.726 0.706 0.688 0.671 
2.8 0.880 0.846 0.816 0.788 0.763 0.739 0.718 0.698 0.679 0.662 0.646 

3.0 0.843 0.811 0.783 0.757 0.733 0.711 0.691 0.672 0.655 0.639 0.623 
3.2 0.809 0.780 0.753 0.728 0.706 0.685 0.666 0.649 0.632 0.617 0.602 
3.4 0.778 0.750 0.725 0.702 0.681 0.662 0.644 0.627 0.611 0.597 0.583 
3.6 0.750 0.724 0.700 0.678 0.658 0.640 0.623 0.607 0.592 0.578 0.565 
3.8 0.724 0.699 0.677 0.656 0.637 0.620 0.603 0.588 0.574 0.561 0.548 

4.0 0.700 0.677 0.655 0.635 0.617 0.601 0.585 0.571 0.557 0.545 0.533 
4.2 0.678 0.655 0.635 0.616 0.599 0.583 0.568 0.555 0.542 0.530 0.518 
4.4 0.657 0.636 0.616 0.598 0.582 0.567 0.553 0.539 0.527 0.515 0.504 
4.6 0.638 0.617 0.599 0.582 0.566 0.551 0.538 0.525 0.513 0.502 0.492 
4.8 0.620 0.600 0.582 0.566 0.551 0.537 0.524 0.512 0.500 0.490 0.479 

5.0 0.603 0.584 0.567 0.551 0.537 0.523 0.511 0.499 0.488 0.478 0.468 
5.2 0.587 0.569 0.552 0.537 0.523 0.510 0.498 0.487 0.476 0.466 0.457 
5.4 0.572 0.555 0.539 0.524 0.511 0.498 0.486 0.476 0.465 0.456 0.447 
5.6 0.558 0.541 0.526 0.512 0.499 0.487 0.475 0.465 0.455 0.446 0.437 
5.8 0.545 0.528 0.514 0.500 0.487 0.476 0.465 0.455 0.445 0.436 0.428 

6.0 0.532 0.516 0.502 0.489 0.477 0.465 0.455 0.445 0.436 0.427 0.419 
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TABLE IlIb 
R (x2, 1, Y2) 

Y 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

1.0 0.785 0.789 0.799 0.814 0.832 0.855 0.880 0.907 0.936 0.967 1.000 
1.2 0.866 0.869 0.878 0.892 0.910 0.930 0.P54 0.980 1.008 1.038 1.069 
1.4 0.949 0.952 0.961 0.973 0.990 1.010 1.032 1.057 1.084 1.112 1.142 
1.6 1.035 1.038 1.045 1.058 1.073 1.092 1.113 1.137 1.163 1.190 1.219 
1.8 1.122 1.125 1.132 1.144 1.159 1.177 1.197 1.220 1.244 1.271 1.299 

2.0 1.211 1.214 1.221 1.232 1.246 1.263 1.282 1.304 1.328 1.353 1.380 
2.2 1.301 1.304 1.310 1.321 1.334 1.351 1.369 1.390 1.413 1.438 1.464 
2.4 1.392 1.395 1.401 1.411 1.424 1.440 1.458 1.478 1.500 1.524 1.549 
2.6 1.484 1.487 1.493 1.502 1.515 1.530 1.547 1.567 1.588 1.611 1.635 
2.8 1.577 1.579 1.585 1.594 1.606 1.621 1.638 1.656 1.677 1.699 1.723 

3.0 1.671 1.673 1.678 1.687 1.699 1.713 1.729 1.747 1.767 1.789 1.812 
3.2 1.765 1.766 1.772 1.780 1.792 1.805 1.821 1.838 1.858 1.879 1.901 
3.4 1.859 1.861 1.866 1.874 1.885 1.898 1.913 1.931 1.949 1.970 1.992 
3.6 1.954 1.956 1.961 1.969 1.979 1.992 2.007 2.023 2.041 2.061 2.083 
3.8 2.049 2.051 2.056 2.063 2.073 2.086 2.100 2.116 2.134 2.153 2.174 

4.0 2.145 2.146 2.151 2.158 2.168 2.180 2.194 2.210 2.227 2.246 2.266 
4.2 2.240 2.242 2.247 2.254 2.263 2.275 2.289 2.304 2.321 2.339 2.359 
4.4 2.337 2.338 2.343 2.350 2.359 2.370 2.384 2.398 2.415 2.433 2.452 
4.6 2.433 2.434 2.439 2.446 2.455 2.466 2.479 2.493 2.509 2.527 2.546 
4.8 2.529 2.531 2.535 2.542 2.551 2.561 2.574 2.588 2.604 2.621 2.640 

5.0 2.626 2.628 2.632 2.63k 2.647 2.657 2.670 2.684 2.699 2.716 2.734 
5.2 2.723 2.725 2.729 2.735 2.743 2.754 2.766 2.779 2.794 2.811 2.829 
5.4 2.820 2.822 2.826 2.832 2.840 2.850 2.862 2.875 2.890 2.906 2.923 
5.6 2.918 2.919 2.923 2.929 2.937 2.947 2.958 2.971 2.986 3.001 3.018 
5.8 3.015 3.016 3.020 3.026 3.034 3.043 3.055 3.067 3.082 3.097 3.114 

6.0 3.113 3.114 3.117 3.123 3.131 3.140 3.151 3.164 3.178 3.193 3-.209 

0.98 < so(x, y) < 1.01, (1 < y < 6), 

0.999 < st(x, y) < 1.001, (6 < y < 25), 

0.9999 < 5p(x, y) < 1.0001, (25 < y), 

0.99 < y(x, y) < 1.02, (1 _ y < 4), 

0.999 < -y(x, y) < 1.001, (4 _ y < 7), 

0.9999 < 'y(x, y) < 1.0001, (7 < y). 

The variables used in conventional tables of elliptic integrals are related to x and 
y byI - k2 sin2 k = 1/y2 and cos 4 = x/y; for example the last point in Legendre's 
table (4 = 890 = sin-1 k) corresponds approximately to x = 0.7, y = 40. That part 
of Legendre's table where interpolation is difficult (4 and sin-' k both > 85?) is now 
expanded to occupy most of the strip 0 < x _ 1, y > 8. Thus the present scheme of 
tabulation will facilitate interpolation when k sin O is close to unity. 

Table III showsthe behaviorof RF,G(X2, 1, Y2) to 3D accuracy in the region where 
the approximations (5.3) are inadequate for this purpose. Reference [7] contains a 
4D table of RF,G(X, y, 1) for x = 0(0.05)1, y = 0(0.05)1. Algorithms for computing 
more precise values are given in [4], and a program for automatic computation 
(using the descending Gauss and ascending Landen transformations) can be found in 



230 W. J. NELLIS AND B. C. CARLSON 

[7]. This program was used to compute Table III on the IBM 7074 of the Iowa State 
University Computation Center. 

6. Examples. The first two examples are taken from [6] and [1] to provide a 
direct comparison with familiar procedures. The third illustrates how to reduce a 
complete elliptic integral by Table II, and the fourth involves a polynomial with 
conjugate complex roots. The fifth is an example in which Table II can be used only 
after splitting the integral into two parts. 

Example 1. Evaluate I, = fB [(X2 - 2) (X2 - 4) ]1-2 dx. We put x2 = t and use 
(T.1) to obtain 

i = ~f (t - 4)-1I2 (t - 2)"-12t-1"2 dt 3 ( )1/2R(1* 2, 2 2; 17 77 4) 

= ( ) 1/2RF(1 1, 74). 

By linear interpolation in Table I11a with x = 0.5 and y = \/7 = 1.323, we find 
1,=(0.612) (1.078) = 0.660. A more accurate value [6, p. 603] is 0.65923. 

Example 2. Reduce to standard form the integral I2 = Jf (a + b cos 0)-1/2 dO, 
where a + b > 0, 0 < ? _ ir, a + b cos 4 > 0. We can either put cos 0 = t and use 
(T.1), or use (T.4) by writing 

'2 = f (1 - cos a, 1/2( + cos a12 (a + b cos 0)112 sin 0 dO 

2(a + 
b)Yl2 

sin (,/2)RF 
1 

2 
+__ 

a + bcos \ 
By using F(p, k) = (sin k)RF(COS2 0, 1 - k2 sin2 ,7 1), one may verify agreement 
with the results in [1, p. 7] both for a > b > 0 and for b _ a > 0; in the present 
notation there is no need to treat these cases separately. 

Example 3. EvaluateI3 = J2 (t - 2)1/2(3 -t2(3t - 5)312 dt. From (T. 1) and 
(3.6) we have 

13 = B( 237-)R(23 27 23; 1, 4) = B(3 I7 )R( 3. 3 1 1; 47 17 0) 

The last expression can be reduced by Table II: 

13 = 3[2RF(4, 1, 0) - RG(47 1, 0)]. 

Entering Table III with x = 0 and y = 2, we find 

13 = '[2(1.078) - 1.211] = 0.315. 

Example 4. Reduce 14 = Jsinh x (t3 + t)712 dt, (x > 0). Using (T.1) we have 
4=inh F112(t - )-'/ (t + i)112 dt = 2(sinh x)112RF(1, 1 + i sinhx, 1 -i sinh x). 

Eqs. (4.1) and (4.2) effect a transformation to real arguments: 

14 = 2(2 sinh x) 12 RF(1 + ex, 1 + cosh x, 1 + e7). 

Since (sinh x)/( 1 + cosh x) = tanh (x/2), we can use the homogeneity of RF to 
rewrite this in the form 

I4 = 2 (2 tanhj) RF 1-tanh I, 1, 1 + tanh -). 
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Example 5. Evaluate I5 = f 4[(t + 1) (t + 25)-3 2(4t + 1)1/2 dt. Direct applica- 
tion of (T.1) leads to an R-function with a = a' = 1. In order to use Table II, we 
write fi4 = 0- f24 and apply (T.2): 

Is = 4R( 3; , 3, --; 1, 25,) - ) R(3; 3, ,3-2; 25, 49,97 )I 

By Tables II and III the first term is 

4[26RF( , 1, 25) - 4R0(4, 1, 25) + -53] 

= (0.00694)[26(0.523) - 4(2.657) + 2.6] = 0.0387. 

The second term is 
1 [74RF(25, 49, 97 )-4R0(25, 49, I) + V97] 

= 4[-4FRF(O.97, 1, 1.96) - 2ORa(0.97, 1, 1.96) + 10.41]. 

By linear interpolation in Table III with x = 0.985 and y = 1.4, we have 

(0.00694)[(14.8)(0.889) - 20(1.137) + 10.41] = 0.0057. 

Thus I5 = 0.0387 - 0.0057 = 0.033. 
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